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KQUATIONS QF MOTION OF A VISCOUS GAS

S8.V, Vallander

Leningrad

(Certain calculations associated with the accomplishment of

this work were performed by I.A. Smirnova and I.2. Kalishevieh.)

The present work is deveted to the derivation of differential
equations for the motion of a viscous gas; for this purpose 1t is
assuned that the gas may, with a sufficient degree of accuracy, be

considered a perfect gas -- that is, excluded from consideration are

the motions of highly compressed gases -- and that the ratio of
the mean free path of the molecules to the characteristic dimension
of the phenomenon [ being considered 7 is small in comparison with

unity -- that is, the motions of highly rarefied gases are excluded,

It is assumed, moreover, that for the gas motions under con-
sideration the law of equipartition of imternal energy among the
degrees of freedom of motion of the molecules is fulfilled with
a sufficlent degree of accuracy; that is, excluded from consideration
are cases of motion of a gas with extremely vapid fluctuations in

its hydrodynamic parameters in space and time.

The contrast between the regularity of the macroscopic motion
of a real gas and the chance nature of its microscopic motions is
agsociated with the fact that the macroscoplc motion originates in
microscopic motions of a vast number of molecules. From the authen-

ticity of this empirical fact it follows that the finite number of
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B chance mleroscopic motions is so large that the macroscoplc
motion twms out to be governed by the same statistlical laws as
would obtain if the number of mieroscopic motions were infinitely

large.

This permits us to discuss, in place of & real, dlscrete

gas with a finite nmuber of finite molecules, a "saturated" gas

in the form of an uninterrupted continuum of infinitely small

nolecwnles,

Such a model is an approximate scheme, within which the
ragularity of the macroscoplc motion of a gas is retained by
R way of omithbing the possibility of investigating every kimd of e

o

mimbe fluctuation associated with the finiteness of the number

3

of molecules in a real gas.

Having replaced the study of a gas with the gtudy of a
material contimmm, one may introduce the oonceptions of the
density, veleoeity, and total and internal energy of a unit mass
of gas. Let us take note that, by introducing into consideration
a gaseous conbtimnm and by specifying the fundamental hydrodynanic
parameters, we shall nowhere create obstacles to the consideration
of the microscopic motions of the molecules and shall even, on
the contrary, assume their existence. The [;;aéeous conbinuum so

introduced can provide for all the physical characteristics of

a real gas which are not related to the finiteness of the mmber
of its moleculss. In particular, one may require that the mean i

free path of a particle of the gaseous continuum be, as in a |
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real gus, finite, although indeod of extremely smsll magnitude.

The derlvation of equations of motion of a viscous gas
presentad below reveals that the equatlons [ 1, 2, 3, 1;] which

are customurily applied have been obtained from inadequate physi- !

cal representations, and in them, therafore, a series of terms
of the same order of smallness as those which are retainod, in

absent,
Je BASIC GONCEPTIONS

Lot us designate the mass of gas in a certain volume as
m. Then we shall call the density //) of the gas at a miven
point ¥ at a given moment, of time + the limit of the ratio
of mass m at moment b +to the volume P, if P, which includes

#y is contracting into this point.

Lot us designate as K the momentum of the gas contained
in volume P. Then we shall call the velocity w of the gas

at the given point M at the given moment of time +t the linit

of the ratio of momentun K at moment + to mass m ab moment

ty if volume P, which includes M, is contracting into this point.

Since the momentum of a system is equal 4o the momentum
of its center of imertia, in which the total mass of the system

is goncentrated, the introduced velocity w of the gas is the

veloclty of the center of inertis of an infinitely small volume.

Let us Introduce the conceptions of the total energy U

of a unit mass of gus and the internal energy E of a unit mass of
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Iet ug agein consider a certain volume i which includes
polnt M. In volume I there will Le a certain mass of 1Aty 0SB HHw
ing a certain finite energy; since by hypothesis the gas 1s perfect,
all the energy of the moleowles will be kinetic. Let us call it

T« Then we shall apree to call the total energy U of a unit mass

i
|
i
i

of gas at o glven point ¥ at & miven moment of time t the limit of

the ratio of Uy ab moment +  to the mass of gas m  at moment

ty if the volume I’y which includes M, is contracting into this

point.

On the basis of the Koenig theorem, quantity Uy may be
divided into two components; the kinetic energy U2 of the centor
of inertia and the kinetic energy U3 of the motion relative to

the center of inertia.

Let us call the internal energy E of a unit mass of gas
ab a given point M at a given momont of time t the limit of
the ratio of the lkinetic enerpy U3 (at moment 1) of the motion [
of the molecules relative to the center of inertia, to the mass
m of gas (at moment t), if Py which includes M, is contracting

into this point.

If we designate as dm, d ¥, au® and dE® the MASS, MONEN-
tam, total and internal energy of the gas contained in the
elementary volume dP, then these formulas follow immediately {rom

_ the int¥oduced definitions: ' .
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At = /j/f F

4 “/ };‘S v;it:/é) E/' (7/ '—/-‘)

' A (1.1)
TS N R
! .«-‘{/ .Z/,y(,) 7’7 //[ﬁ /)u/

The above introduced magnitude E of the internal energy

of & wit mass of gas may obviously be divided into two components,

The flrst of them, El’ will correspond to that part of the
kinetic energy of the motion of the molecules which is associated

vith their forward motion.

The second of them, Eyy will correspond to that part of
the kinetic energy of the motion of the molecules which proceeds

from thelr rotational and vibrational motions.

It is customary in the kinctic theory of gases to desig~
nate as the temperature a magnitude proportional to Eye The
factor of proportionality obviously depends on the unit in which
the temperature is measured and becomss completely determined
if sueh a wnit has been chosen, Customarily the temperature is
accepted as being measured in Kelvin degrees and is designated

as T.
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For such unites of temperature measurement we have by

definition
2T i g l6_OYES _—
)L, e K A = } T i (Le2)
7/(2;» ‘/”Z‘j Ve /“ X /5/)('[(’ degrees

vhere k 1is the so-called Boltzmann constant, and mg is the

masy of one molecule of gas.

Since the prineiple of equipartition of energy among the
degreos of freedom applies for the gas motions under considera-
blon, the component E, of the quantity E is also found tu be

2

proportional to the temperature T,

Consequently we have

/{ =, A (1.3)

where ¢y is a new coefficient, of proportionality designated as

the sgpecific heat for a constant volums,
2e TRAHSFER PHENOMENA AND SOME CONCLUSIUNS

Ve shall give an elementary interpretation of certain
physical phenomena belonging to the group of so-called transfer

phenomena .

Le .‘Dansijgg_ﬁe.‘Lf-Diﬂfusion

Let us consider a cerbain stationary region ABCD of area

-6 -
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Z) S with a normal T in a macroscopically quiescent gas.

Let us designate as /'l the mean free path of the molecules and
as ¢ the average magnitude of the velocity of .ther'mal motion
of the molecules, and lebt us suppose the temperature of the gas

to be constant.

Let us simplify the representation of the motion of the

molecules and assume that half of the molecules have a velocity
in the direction of the normal m and half in the contrary di-

rection.

Let us assune, moreover, that all the molecules traverse
> £

the path 7 without collision in the course of time
A

At == L (2.1)

Then half the mass of a layer of gas of thlckness /Z
adjoining area A S at the top will move downward, and half
the mass of a layer of gas of thickness /( adjoining area /\ 5

at the bottom will move upward. S

If the magnitude of ',:l is small in comparison to the
characteristic dimension 1 of the phenomenon, we may, with

a sufficient degree of accuracy, write

/ < ﬁ/ ’ . - , .2
Z m, =15 {)%’;’Z %)7 ﬁmz =] 94 /?3 L2 AN (2:2)

on Z/

J \
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where A n, is the maass of the layer of gas of thickness .,:{_

which ds situated above area B ;\ my is the mass of the

layer of gus of thicknesg A which is situated bslow area

(_;/ ig the density of gas at a certain point of the arsa, and
"."‘f:) /Sy s the derivative, in the direction of m, of the

density /) at a certain point of the area | 8.

It is evident that the magndtude

™

n/'//. ' )._._.“..M].’/!‘j' 1 ...:...M (2.3)
p / Loy =dm, | = 74245 n

s zives the mass of gas transferved as a consequence of the varia-

tion of density through a region of area /\ S during tine A t.

Let us desighate as Qp \ that flow of mass (through the
t.

area with nommel m , in the direction contrary to M) which is

associated with the variation of density.

Then we have

¢ Am

o
hu
i

(2411)

Due to the simplified representation of the moticns of the
gas molecules it is impossible to trust the accuracy of the

num@erical factor in formla (2.4). It is therefore advisable
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N/J ti ar.

(265

where £y 1s a nondimensional factor of the order of unity.

From formila (2.5) we see that with variation of density
in a macroscopically quiescent gas there occurs a £low of mass
through an area which is stationary relative to the gas. This
phenomenon of flow of mass as a result of denslty variation may

for expediency be called density self=liffusion.

It is evident that the reasoning also holds if we con-
sider a macroscopically moving gas and an area moving in space
with the macroscopic velocity w of the gas, The density self-
diffusion flow of mass, Q o will be given by formula (2.5)

j

in this case also.

Let us romark that density self-diffusion has never been
taken into account in the writing of equations of motion of a

viscous gas,

2s  Density Heat Transfer

lLet us consider, as above, a certain stationary region
of area /\S with normal m in a macroscopically quiescent gas,

e g

retain the former designations and analyze the problem of trangie

"
A

of internal ensrgy through area 2y B assuming the temperature
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of the gas to be constant.

A nass of gas 1, ,f:ffqm? with intermal energy /\ Tip will be

transferred dovmward, and a mess % ,ﬂml with internal energy

el W By will be transferred upward. We have, obviously

A / pors
L 4—-2 - ?“A g2, f (26)

(2.7)

gives the quantity of internal energy lLransferred as a result

of the variation of density through the area A8 in the course

of time Lt
let us designate as tn B the flow of internal energy
(through the area with normal ® , in the direction contrary to

T ) associated with the variation of density. We have

. If one cannot guarantee the accuracy of the numerical

factor, it is advisable to put
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vhere fo ds some mmerical factor of the order of unity.

It is evident that the reasoning also applies i1f we
congider a macroscopioally moving gas and an area 248 whieh
is moving with the macroscopic velocity w of the ffas. lHore
too formmla (2.9) will give us the flow of internal-energy

asgociated with the variation of density.

Ve may, for expediency, call the phenomenon of bransfer
of energy through an area which is moving with the gas, which
phenomen n proceeds from the variation of density, density heat

transfer.

Lot us remark that the phenomenon of density heat transfer
has never been taken into account in the derivation of equations

of motion of a viscous gas.
3« Viscosity
EAN Sl

Using the same simplified schematization of the motioen
of molecules, it is not difficult to analyze ‘the problem of
transfer of momentum through an area which is moving with the
gas for cases where the macroscoplc veloeity of the gas ig

variable in space.

For the coefficients of viscosity //ﬂ / and /w which
appear here, standing for the derivatives of the components of
velocity with respeetr to tha-coordinates in expressions for

flows of a quantity of enargy, we obtain the formulas

‘(,i = /g/j/( C, ’//’l :.m/-gh/J/’{’ﬂ (2.10)

- 1l -
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where f3 and fh are mumericul factors of the order of unity.

Remark. The discussed phenomena do not exhaust the
list of phenomena of transfer, if only for the reason that the

nsual temperature heat transfer is not among them.

Nevertheless, from the analysis of these three phenomena

wa may already make three essential conclusions.

First, for the construction of equations of motion of
a viscous gas the usual scheme of reasoning with a fluid volume
of constant mass carmol be used, since the mass of a volume
= bounded by a closed surface which is moving with the gas may

change as a result of self-diffusional flows of mass.

Secord, in the construction of equations of motion of a
viscous gas one may not confine oneself to the calculation of
viscosity and the usual temperature heat transfer alone, since

other transfer phenomena also occur.

Third, in the construction of equations of gas motlon one
ought to bear in mind that with variability of the hydrodymamic
paramgters in space, mass, mosentum and energy are transferrsd

through a surface which is moving with the gas.
3. GENERAL WRITING OF THE LAWS OF VARIATION

Let us consider, within a space occupied by a medium
which is moving with velocity w , a certain stationary volume -
V bounded by a surface S, and leb us suppose that located among

the points of the moving medium which fills the space is a certain

- 17 -
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scalar or vector quantity A, which is a function of coordinatos

and of time.

Together with quantity A let us consider a quanbity Sﬁ ’

whiich is deteraned by formala : i

[ N

/\]/“;f%(/// (3.1)
v

vhere dV is an eleent of volume V.

For the fixed volume V the quantliy -97;, will be a function
only of one Lime t, and then, obviously, we shall have the

formla,

L wrlth vime

Let us grant that the vardation of quantity
b

arises solely as a result of the independent action of the Follow—

ing two factors:

(1) inside volume V there occurs & growth of quantity
& with the volume velocity B, leading to the condition thab,
as a result of the action of this factor in volume dv in the
course of time &b, the quantity Sb undergoes a change ‘if/: N

vy
which .8 determined by the formula

’j{ D = BV det (343) , ,

- 13 -
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(2) through the surface 8 of volume V there occurs o {low
of quantity ?j with the surface density (}n, leading o the conw
ditlon thet, as o result of the actlon of this factor upon an
element of the surface dS with the extermal normal ¥, in the course

of tlme dbty, the quantity ;z* undorgoes a change ] ok s which

2 *
is determined by the formula
| A P =G aSar (341) 3

—z X ezl

«

tince the two factors act independently of ono anobher,

when we have integrated magnitude ) % with wempect to volime ¥
L o jr e

and magnitude /1, > with respect to surface 8§, have combinoed the
£
results of the integrations and divided by dt, we obtain u second

expression for 4 :%fj«/dt, which is given by the fomwula

2N
[0, 7 “ )
I W »Vj Vi )

Setting (3.2) equal to (3.5), we arrive at the equality

[Z‘ Fige . .
el £ e / [&l/ a P s G #S (3.6)
JSJ] | 7
[ S
Let us agree to conduct all analyses in arbitrary orthow
- © gonal curvilinear coordinates Qs 9ps q3» comnected with the
Cartesian coordinates by functions which do not inelude time 9

aml let us select out of volume ¥V a volume bourded by the sur-

faces

Declassified in Part - Sanitized Copy Approved for Release 2012/04/03 : CIA-RDP82-00039R000200010005-4 . b
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7= ¢~ GTARTL 4=0g =g, O

If we desimmate the coofficients of Lamé as Hys Hglamd H3 »

then £or the selected volume the ecquality (3.6) will be rewritten
in the following manners

8t 7 % 7,
el

[

/ '//"/" 24y HH g g iy = ' ; A oo
/o BE G Y, 70Ty T L’(')/rf 4, g, f'/w ag 7

a &
a b o

4

+ /77 7y e2) /4’/@‘@“)/’;4 '@-"’/"‘{?} g, (3.8)

wheve Gqp Gos Gy denote the surface densities of the flow through
19 M2s M3

the boundaries of a curvilinear parallelepiped with normals

-1 -
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parallol to uxes dq, dp and q3s and G-—l’ Oos G~3 denote the same

quantities for contrarily directed normals.

Differenticting both parts of equation (3.8) with respect

to gyy and Uzp VO easily arrive at the equation

L |2GAN] e th) i n )

iy ! Tl

(349)

Let us resolve each of the magnitudes Gy, Gp, G3 into two s

(3.10)

where v, Vo and vq are the projections of the veloclty vector

v of the mediun upon axes qp, qp and q3.

The meaning of the components in formulas (3.10) is asltogether
clear. If the moving medium were being transferred like an or-
dinary (not gaseous) contimious medlum and if the flow of magni-
tude »’2’7 wore associated only with the macroscopic movement of the
substance through surface 5, then we would have only the first
components in formilas (3.10). In actual fact, on account of the

molecular composition of real media, the flow through the sur-

face may be assoclated not only with the macroscoplc motion, but
also with the molecular motions inside the substance which is
moving with velocity w . For this reason corrections to the
first components are imperative. These corrections, designated

as Cyp Cp and Cysare none other than the flows through an area

- 16 -
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yhich 1s moving with the velocity of the mediwn. Inserting (3,20)

into (3.9), we obtain

4», /, A, )7‘“7{ (A g, /7/ A )'f :); zl/ir’ //{, //;')J =z

#

\

- '3

oA, w24 7 A
Y /17,: D7 ; r{? 95/3
/]’ (.//:f - / _ 7y
A )+ 1 )+§~« (5,44, )} =
. Ly “ ‘( " 7

37(” 44 ) %é /ﬂ

"o

(3.12)

If we take advantage of the well-known fomulas

d/fi M%__m.;a oA 7 94 , A

c{ t :.'jf‘ /{ ﬂ%/! /,{; (a}i:iz /‘}{; 0’:;-’_

k.

v e | ot WV ls ) D o
,‘%;/ﬁ;;tf/; {":}?J ' f’/'z~" bl ‘(;; FYI/J/’z/f;.fg‘. fé@,{é")l
-

-17 -
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then equation (3.12) will be rewritten in the followlng form:

7 - '
4 i ‘} oy ~
:‘"':"" "7‘" A (/l/'l/ n ’a r,_ﬁ' .,t..-..-{.—.m .:'5... (-"‘ / 7/ // _wf"‘__ g t'.':‘
& E4

(Reuation (3.1) may also bo obtained by consideration of a moving
volume V, bounded by surface 5, the points of which are moving

with the macroscopic velocity W of the motion of the medium.

Tn this case, instead of (3.6) the following aquation 18

obtainad:

where Gy is the flow of the quantity ‘}7"’ through an area which is
moving with the gas and which has the normal ¥h. From (3.62)
foilows (3.14), and gimultaneously the meaning of magnitudes

Gl, 02, 03 is revealed again, even more gx'aphically.)

This equation [— 3..1uj represents the desired expression in
differential form of the genoral law of the variation of quantity
A in accordance with the assunptions made above concerning the
factors which determine the variation of quantity *}Zf? s winich is

related to A by formula (3.1)

L. BOUATIONS OF MOTION OF A MEDIUM

with the aid of ecuation (3.14) the equations of motion

of a medium for the calculation of the Tlows of mass, momentun

- 18 -

D -
eclassified in Part - Sanitized Copy Approved for Release 2012/04/03 : CIA-RDP82-00039R000200010005-4

4
;
]
i

i




Declassified in Part - Sanitized Copy Approved for Release 2012/04/03 : CIA-RDP82-00039R000200010005-4

and enargy w1l be derived very sinply, if implied in the laws
of variation which are expressed by equation (3.1l) are the laws

of congervation of mass, momenturm, and conservetion of energy.

Tn order to obtain the equationg of continulty, it is
¢
necessary to take the law of conservation of mass and, asswning
the absence of spatially distributed sources, to pub

B=0 O =)
"y

N

whore M is the massy, 2 is the density, s Qos c3 are {lows
of mass in consequence of self-diffusion through regions perpon-

dicular to the coordinate axes.

Then we obtain the equation

/o

Mu:w m..* /,« - ._ml,w..,, A \ e )
i TP //, acs /“’ A )P (’f HA) 7+ e

(Y

t‘?ﬁ a7

# '“fm // )
& ;‘/‘ '

In omder to obtain the equations of motion correctly, it

s necessary to follow the law of momentum and put

25 37 'z (1e3)

where I is the momentum, W 1s the velocity, ¥ is the mass
force, 3¢, Qv f¢ ave the flows of momentum through reglons

1 Z S
perpendicular to the axes, or, what is the same thing, the stresses

of the surface forces.

-19 -
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substituting (he3) &n (341l) we obtaln

“
pre ("V)—//m AW = (el |

i,

_w/) F ”7'“/?"/,7:‘[37}“/?'// H )7‘“;”,"/?’//*//’)%; (zw 4 /¢>

A

or

‘ /.«.ff &) AU )
() e e P f e e 3 U ) 2
A /

(hv;)

AN A )5 /'f:r /)

Substituting in the parenthetical oxpression in the lef t

(L.2), we obtain

Y with the aid of

hand side of (L.

v N N
£y e =t T, Vool S B A )] ==
[ete () o A f}ﬂi

Lo

B

;—)’ iy ] e ¥
(A (A ,+--~~/m o
' B 4, J

or

Declassified in Part - Sanitized Copy Approved for Release 2012/04/03 : CIA-RDP82-00039R000200010005-4



Declassified in Part - Sanitized Copy Approved for Release 2012/04/03 : CIA-RDP82-00039R000200010005-4

2
- = DA Y=l
Fae ™ g g, (G M) s, Gu)+

2 (O oy oy e plF e L 2T L 2% £ P

foi (7
55 (G 4 i = i Ry R I St ¢ R
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I Practically, one is obliged to use equation (Le7) not in
vector form, but in projections onto the curvilinear coordinate
axes. It is therefore Necessary to make projections of the vectors
which enter into this equation onto the curvilinear coordinate

AXOHe

The for Lor the projects :
1 Lormulas for the projections of an accelerati on dw /dt

are well lmown;

/ /7 .
{a/ | .
W= ) _ou, v 2y 4 2y
T 2 /f ﬂ/ A/ ‘2( £

<
3
N
S
.
e
Q)

.

< el Ty * 9//

A Y TR e L2 T
e vy OF A Oy

ez ¢t ?; // ez ’;7 (//W’/z 3‘/

. (b8

where v; = ¢ ro]
ere vy VY. 3 are the projections of the velocity onto the

- 2L -
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curvillnear coomlinate axes,

s

and Iy = Hy +3 ore the coefficients
of Lamé,

The derivation of formulas for the projectiong of the
dorivatives with respect to the coordinates » of vectors T‘E »
"(‘:”’"&’ » and ¥ also presents no difficulty. We put

G _ e e e,
27 T M T A T PR

SES N ¢ ) (1e9)

] 9
ilg P and R

CEIE
3
the curvilinear

the rorthsi/Munitvectors 7 of B
. I . .
coordinates, and B}EI) are coefficients which we

shall determine later.

Taking (L.9) into consideration, we shall have s For the

derivative of any vector & with respect to the coordinate q
the formula

b4
3

) gy ~7 R

aaq. . [ Gl p4)
";:'\;,"""““‘ — o > j/:k /+ Z ’:/..ﬂ/ 7, \Lﬁfj/ f—"fr‘ljﬂ(//ﬂﬂ(ll«-l())
27 Ly | Y

4 ) Y

/=

where 835 8o ag are the projections of the vector onto the
curvilinear axes,

Using formulas (4e8) and (L.10), we obtain from the vector
o equation (La7) three scalar squations:

- 22 -
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n
Ilet us £ind the expressions for the coefficients Bél)' From
(449) we have

%0 Y / (Lel2)

- 23 -
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i, 3,k are the unit vectors of the Carteslan coordinate

axes, and if the relation betwsen the Cartesian and curvilinear

coordinates is piven by the formulas

%

4 3, E'\, f
- ),,_8:7-3.,-:1_/;4{('
P Mlels
72 g pees)

2‘?7 91?

/:*:,_,_ 9??

& Ce 3

g

2
X5 )
& AV

Bquations (h.11) together with (he15) are the equations we

were seeking, expressing in differential form the law of momenta.

Let us pass on to the derivation of the equation of energy.

For this let us make use of the law of conservation of energy.

We pul

-2l -
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..4

poe=(]" - Fvre
@f é/, f4 2 A +/z;L b / é (1.26)
C’/Z :.:*:.’zz.,‘a;'./»z‘ﬁy C"; - z;“'ﬁ??“l%

Lsie}

where U'* is the total energy; E is the intermal energy of a unit
mass; /) ¥ *w is the power evolved by the volume forces; @'v ’
?’z L T’: o are the powers evolved by the surface forces on
a wiit area of regions perpendicular to tho coordinate axes; &

is the volume velocity [" specific rate:/' of liberation of chemi-

cal, light, elc. energy; tl, ta, Lj are flows of heat through

areas perpendicular to the axes.
Substituting (Lel6) in (3.1L); we obtain

/_ .J—

s N
{m_ wﬁ[”"‘/ 7 J/ Py ) Ay W = '/)f b ke
/

/2‘: S A )-/ ?-—//;w v/, 4) ’f”
N

-k

) \?{”m’%ﬂ (2 “(helT)
g 5 /-/ZX)f:%ﬁ M‘)J
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AV ity
Pise H(E=F NGz 0t v )w FompFoyves

v |2, 7
A [ (T H, #, ) # ng; r ////) f-g;/r///,

2

Cy K 1 i
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P

Using equation (h.2) and equation (lhe6) scalar-nultiplied

by W , we can produce obvious simplifications in the foregoing -

equation,

Then we obtain

/ -
] P
"Hh 4, .af ) ““““/ /4’//4)+—-—ﬁf HH )I (e29)
L fr ,4’
»/
This is the desired equation of energy. In writing 1t in
expanded form we should keep in mind that the derivatives of

the velocity vector with respect to the coordinates must be calcu-

lated with the aid of formula (Lel0).

-26-—
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In the case of Certesian coordinates x, y and 2z, when
Hy == = 11371”"- 1y and Bg_l) == (0, all the revealed equations are
substantially simplified, and from equations (Le2), (Le1l) and

(14418) the following simple equations are obtained:

PR /. s (;/}/ e
ar T Y e

-

Y [ )
& (a':{ (,;4) . v (f'l’,tx y
bn F ot 2 P A S |
P e P
L Fooay dy  TE

o s
Y e \
// »:_"'fff " , &7 f.»g::;
Lo agher s
(4 B - k
¥ / 7Y Y

The quantities Qy, 7% and by which enter imto the obtainad

aquations are determined in the following paragraph.

- 27 =
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5, EXPRESSIONS FOR FLOWS OF MASS, MOMTHTUM AND HEAT

For the determination of the magnitudes of the flows
of mass Q4 nomentun ?C:, and heat ty through a region which is
moving with the velocity of the gas W perpendicularly to axes
gy (In order to simplify the exposition, the indication thut the
question is of flows through moving regions is dropped), we shall
asswie that these magnitudes must be linear functions of the first
derivatives of the hydrodynamic paraneters with respect to
Cartesian coordinates. (This assumption way be accepted on the
basis of numerous experiments devobed to the study of various
types of particular cases of the phernomena of transfer of mass,
momentum and thormal. energy in gases. The results of these
experiments show that with adherence to certain conditions the
flows of these quantities actually do twrn out to be linear
functions of the first derivatives of the hydrodynemlc para-
meters Vys Vs Vs jO and T with respect to the Cartesian co-

ordinates x, y and #.

Tt is evident that in accepting such an assumption we
gomewhat narrow the class of gas motions which are accessible to

research through the aid of the derived equations.

In fact, in justice to this assumption, it is, for exanple,
completely imperative that the hydrodynamic parameters should,
with sufficient accuracy, permit linear approximation at dis-
tances of the order of several times the mean free path of the
molecules, since otherwise the state of a gas in a volume wi‘lich

is forming flows and which has, for all practical purposes,

- 28 -
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dimensions on the order of saveral times the mean free path of
the molecules, would not be determined by the asslpgnment, of the

hydrodynami.ec paraneters thonselves and of their first derivatives

at some point of the volume., Not having any data on the state

of & pas in a volume whicii is forming currents » 1t would actually

be necessary to state the problem of the search for an expression

for these {lows in teras af the hydrodynamic paraneters and theiy

Pirst derivatives. At any rate, in spite of a certain narrowing

of the class of gas motions accessible to such an investigation,

experiment and the kinetic theory of gases affirm that the basie

assumption formulated above will with sufficient accuracy be

falfilled in a very broad class of gas motions of practical inter- N

esty and the basic agsumptions which were formilated at the

beginning of this work suffice to assure its correctness.

Here the expressions for the currents are first determined
in Cartesian coordinates, and then in general orthogonal curvi-
linear coordinates.) The coefficients of these linear functions
must depend only on the hydrodynamic parameters themselves, Tt
is obvious that they camot depend on the projections Vs vy and
vy and the velocity w . Therefore they must be functions of
density and temperature only. (The question is of flows through
a region which is moving with the gas. The velocity of the gas
relative to the region is always zero, Therefore the values of

magnitudes Vs Vy and v, cannot be reflected in the flows.,)

Let us set about the search for linear forms for Quer

Qy and Qze Proceeding from what has been said, we must put for

O

-29 - ]
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1t is evident that with a reversal of the direction of the
x axis, the sign of magnitude Qy must change. Therefore, in
the right hand side of fox'mﬁla (5.1) there can be no term which
does not change sign with the reversal of the direction of the
® axis. lence

/
g ~L K

J . i . e, [ o e e e
g =ma, =4, Tl TG =y = dy e, =& = (52)
A Lx k%

2 Zx F3

Further, Qyp must not depend upon the directions of the

y and % axes. Therefore

— — == = =
Cp, =y == Sux o (53)
- 30 -
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Consequently

() e o y a7
L\“j,xv 7 A 4 ’ff,?ﬁ K (5el4)

Since the x, y and z axes possess altogather symetric

properties, then it must be that

We shall call coefficient Dl the coefficient of density

self=diffusion, and coefficient Dy the coefficient of temperature

self-diffugion.,

For the linear forms which give the flows of heat ty s
ty. and tz’ repeating the expressions just written, we arrive

at the formulas

sy - oy Ny
e PP L \Vﬂfgg 2T, e
7wl T S y =K S TR S, A s
¥ r 27 o D ) Zdy edy’ p "¢ 2z (5.7)

e

4 o

where Ky may be called the coefficient of density heat transfer,

and K2 the cosfficient of temperature heat transfer. Coefficients

-3l -
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Dys Do and Ky, Ko are ancountered in the kinetlc theory of gases.

Finslly, let us establlsh, for Cartesion coordinates, the
appearance of the linear forms which give the projections of

chctora'?‘; ’ '?‘I; and 7; on the x, y and 7 axes.

Let us return to equation (3.1h) and write it in Cartesion
coordinates in conformity with the law of moments of nomentm,

Lebt us pubt

¢ s ) (5.8)
Ry ¥ ?; . (Z ==y ?; ‘ {; =k Z‘;
yhere T is the moment of momentum, w is the radius vector of
a moving point of the medium, = X I& E ?s5 the moment of the mass
forces on a unit volume, w X ?1 s I'x T,:/ s By T‘; are
flows of the moment of momentum bhrough moving areas perpendi-

cular to the axes.

Introducing (5.0) into (3.1k), we obtain

O
— 6» Ko¥) /ﬁuyﬂa o) dr ¥ = l",*/wf” PR ) - (5.9
4 z ¢

2 s 2
7"2;/ /pu,r?;) 7‘”;;0”*?;)

or

'{"" 7)[!) f/ﬂVﬂﬁk’ r 2 /gf' —- :.,. - ﬁ...::! o

Ar 9" ;'}.- 3
X L L ¥ — 5,10
At O 2 /Y?;?"'dy,é’:i;%a X?: . (5410)
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Here the /[“expression in Jsquare brackets is equal to

sero on the basis of (L.l). Moreover

!ﬁ/f" “:/i” P (:;),” P2 9’4

::);? /'{; p V= p/',,r//) V= (2') (5/3';- = 5/;/.. :J ;_?z,__ - k (5.11)

Congsequently

et

Fx Trpxt TRIT =

This vector equality is equivalent to three secalar equalities

representing an extension of the well-known symmetry characteristic

of the stress tensor of a continuous fluid with self-diffusion.

Having this in mind, and in conformity with general con-

siderations, we put

2. " T/’—fj #2 % ﬁ’ﬂ 73/ _%Z
P e (,}/4, e Dn

() 9/‘ /z) ;1‘7
7"& L mm— ‘f'A et as
R ey

(s) “T

. 3y 7T (5.13)

L hrect o ;fx ]
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g Je,

e, /v, I /.

"/Lﬂ‘ '//) ﬁ o / ‘f“"ﬂ/ (7} "'"“g";/ %__-‘?‘ 7“'4 /,) fz {’574. >,.?‘i + (5013) (00n't>
., .ﬁ i y / /)}" ta.;‘v

f//,')” %) /P

/ - e .Y B e

& ( S ,«7{/ mf: r::f,'t",f ~:.'}.ZT )

Magnitudes Asyes and the other coefficients in (5.13) as
well, do not depend on the values of the derivatives of the hydro-
dynamic parameters with res pect to the coordinates; they may be
found in those values which they take in a gas with constant

hydrodynanic parameters

' ')’ / /i * "

A o e o 4 o i A .
Vv P A] (w /4 ?f A (5.10)
where p is the pressure in a gos with constant hydrodynamic

parameters, which is determined for a perfect gas by Clapeyron's

equation

(5415)

Further, since magnitudes 2.’;&, do not change with a re-
versal in the direction of all the axes, whereas the derivatives
of {.J and T with respect to the coordinates do change aign with

such a reversal, then

s 7z} 3) ) 3 )
a4, =4 =, r:zé;.,&' m,/,iw ".:';:.-:Z’,E:Q"’ e () (5.16) B
-3l -
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Finally, in consequence of (5.12), it is evident that

we have

Mmoo G
Ciw TE, TE, T 4 (5.17)

Therefore, magnitudes % (the components of the stress
"
tensor) prove to be linear functions of the components of the

rate of strains tensor only., This, as is known /5 7, suffices

for obtaining the equalities

. (/}

g Y A B e Py e
- /' 7;,1(:[, A oV AP R

A
S

au

Ve == "M Ter 22 4 Dt =

S /

.

where /p( / and 4 ore some functions, generally speaking, of the
e A "
density , and temperature T. Quantity M s a8 is known, is
I'4
i v
called the coefficient of viscosity, and quantity 4, , the coeffi-
I

Fe
cient of second viscosity.

If we introduce into congideration the tensors: of stress

T, of rates of strains I’}? s and the unit tensor F  , then

all the foregoing squalities are incorporated into one:

-35 -
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AV e S s i) e T
A ] T

Pl

which is extremely convenient for conversion to any orthogonal

curvilinear coordinates. converting in (5.6) and (5.7) to oxrtho=

gonal curvilinear coordinates, ve obviously obtaln

Further, corwarti.ng‘?.n (5.19) to curvilinear coordinates,

and performing the usual calculations [ 5__7, we obtain the last

of the desired formlas:

] 7 e :
7. 2. T H P it

g Tl

The obtained expressions for the flows of mass, momantum

and heat contain six coefficients: Dys Dos ¥y Koy M3 A e
: Vs
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SN P “

6. DXPRESSIONS FOR CORFFICIENTS /{i‘ » D1s Dos K3y Koo

For the establishment of expressions for ocoefficients
/M () Dys Dos Ky and K, we ghall make use of the methods of the

theory of dimensions.

Tf we introduce into consideration the coefficient cy
[s/im./}-ﬁ-:r Jreat
of thermal capacityAfor a constant volume, expressed in mechani-
cal rather than thermal units, we shall have the following correla-

tions between the dimensions:

(61)

Vs

. y & R A 4 [ .o
‘ TP (62)

r)
o ,
-4 £ /2 // e
/

where 8, o s *X 3 l/j and 4 will be nondimensional functions
£ 27 A /;,
of the nondimensional parametersywhich determine the condition of
the gas in a state of equilibrium, ginge the formulas for flows
prove to be applicable with the same coefficients for all the

states of a gas under consideration, including those which are

arbitrarily close to the state of equilibrium.

The equilibrium state of a given perfect gas is fully
determined with. assignment of its density /0 and temperaturs T
Not a single nondimensional combination of these magnitudes can

be constructed. Therefore, for a perfect gas magnitudes a, f{.ﬁ »

- 37 -
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and f.a will ba constants depending on the kind of
f

'

‘ 4

J-E 3 (-’/'1
pag, and for this reason coefficlents /"1 s D1s Doy Ky and Ky
may be considered known with an accuracy up to that of constants
o

. . and /7, if the coefficient of viscosity

! P 7
ay A,y W,y /{;‘
is known, since the coefficient ey of thermal capacity, with

volwne constant, is constant for a perfect gus.

7 GOBFFICIENTS a, “, w% R /“‘%: and /Jﬁ

The kinetic theory of gases permits us to expect that the

mumerical coefficients a, d,on Ay /

tudes of the order of unity. Generally speaking, these magnitudes

75
J.{; and

,“i: will be magni-

/
!

must be determined through suitably conducted experiments.

At the present time we do not have experimental values of
all these coefficients at our disposal, but nevertheless, supported
by certain experimental results and by deliberations igsuing from
the kinetic theory of gases, we shall give numerical values to

these coefficients for monoatomic gases.

To begin with, it is well known from the kinetic theory

of gases that for a monoatomic gas it must be /6 7 that

Further, in experiments on M self-diffusion in gases

it has been established /7 / that one coefficient is the same

- 30 -
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for all monoatomic gases (within the limits of experimental

aceuracy)y nanely

Ay = 4.50 (7.2)

which is also sufficiently close to theoretical values of this

coefficient obtained for various molecular models, laving estab-

lished the value of o, , it is not difficult to establish at

once the value of ,;3! as well,

By the very meaning of coefficient Dy one may assert that
with a constant temperature T and a variable density /() through
a region of area dS with the normal ®»2 during time dt, there
will be transferred, as a result of density self-diffusion, a mass

A m, given by the formula

g

) P
Lm == L) 57— dSat
XD ( Te 3)

&3/ .
This mass possess{/thea thermal energy A q, where

;—%:;
Poeret g 7 - o ot S tff:
¢ w! =0,/ 4 5 LS L (741)

This thermal energy is the thermal energy which passes
through our region during time dt as a consequence of density
heat transfer. Consequently there is another expression for

magnitude Aq

Declassified in Part - Sanitized Copy Approved for Release 2012/04/03 : CIA-RDP82-00039R000200010005-4
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(’w«

P
AhwﬁMﬁM& (7:5)

Bquating (7.L) with (7.5), we obtain dy = /9/", . Con-

sequently, for moncatomic gases

/ﬁz = 1.30 (7.6)

Let us turn, further, to the steady transmission of heat
through a flat layer of gas, which ig bounded by two partitions

Pl "
located at a distance 44 s with a difference A4 between their

temperatures. If we designate the heat flow as q, then from
experimental data we sasily find the value of magnitude £, which

is determined by the {ormula

" ¢
/7 7

ot ot s

LT e, ATAL (7e7)

The average experimental value of this magritude for mono-
atomic gases [ 8 7 is equal to 2,51. On the other hand, it will

be demonstrated below (sections ¥, 10) that

VAR
F=4-p, )

Consequently, for monoatomic gases

7
Pz = 3.81 . (1.9)

- L0 -
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Lot us now concern ourselves with the search for 'f}’z’ .

Let us consider the heat transfer in a quiescent gas of
constant density and variable temperature. We designate as Zq
the quantity of thermal energy which passes through a region of

ares dS with the normal ma during the time Iinterval dt. Ve

have, obviously

22 e
A vt L Ll S
J:;;,f “{/ priemiey /\“{\..ﬁ . A /:7 (/fd . (7.10)
7.

Hagnitude A q is made uwp of two components s e qy and
A e

The first component,  Adys represents the quantity of
thermal energy flowing through the region on account of the

temperature variability only, disregarding thermal self-dif fusione

This magnitude may be caleulated according to the theoretical

formula

pp—

& o)
5 N £ & .
g =F we == a5 ¢, (7.11)
¢ Eay Y o

Serving as a basis for confidence in applying this theo-

retical formula to monoatomic gases is the circumstance that for
the most diverse models of the molecules of monoatomic gases, &

extremely close values for the nunerical coefficient are cbtained

- Il.l -
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[' 9_7. Namely, for all theoretically analyzed models of mono-

atomic molecules, f* 48 found to lie within the range 2,50 Lo 2,52,

Therefors we shall accept

N oo
Vo' £ 5 ,
S me 25 e, e AN L
7 ,f/“ v n i (7412)

The second componsnt, A P represents the quantity of

: thermal energy which is transferred by the thermal-gelf-diffusional

Flow of masse. If we designate as /) m the mass which passes through

the region as a consequence of thermal self-diffusion, then we

pa— shall have

(7413)
r;‘ 7
//’ sz e o A T «-6—:«'; o Gt
- ;;‘)"2 a4 A s...)?:; F= 0 74 :%\)7 L?j"-x' & I’/é{ (7.1)1’)

Equating the two expressions obtained for Zlas we geb

o

o e B e K ‘
2 /‘5-;, / (7.15)

Consequently

o, =1.30 =

-2 -

=
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Tn conformity with our earlier expectations, all the
g \ of t e -
coefficients &, 5 Uy » /{i{ , /53 and & are found to be magni

tudes on the order of unity.

.l’ifmmdﬂ . The relative magnitude of various terms in the
oquations of motion will differ under different conditions. One
may indicate conditions of gas motion under which the se?.i‘—-dii‘fn—-
gional terms will have the basic signifilcance, and one may indi-
cate conditions of motion under which only the texz;i- agsociated
with the stress tensor will have basic significance, etc. There-
fore, it is impossible to speak of the relative magnitude of
various terms in the equations of motion without having specified

tho class of motion.

An extremely important class of motion from the practical
point of view is constituted by motions in which the magnitude
of each of the hydrodynamic paraneters (velocity ¥V density

10 and temperature T) varies by & magnitude of their own order

at distances of the order of the same length L.

7o such motions belong, for example, motions in a boundary
layer under high velocity conditions. In these mobions, at points
separated from one another by distances of the order of the
thickness of the boundary layer {_gk s the hydrodynamic parametors
differ, generally speaking, by magnitudes of the order of the

hydrodynamic paraneters themselves.

1f we have in view just such motions with one characteristic

inberval for all the hydrodynamic parameters, then the standard

conversion to nondimensional magnitudes leads us at once to the

_l;_B -
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conclusion that in these motiona all the self-diffusion, heat

transfer and viscosity terms have the same relative magndtude,

provided the constants a, @, , @ s /ﬁ; and & are of one
- / -

order.

Since according to the kinetic theory of gases all these
congtants are of the order of upi‘oy, it follows from what h;Ls
been said that for the motions under consideration the retention
in the equations of even one term associated with phenomena of

trangfer makes requisite the retention of all the other terms

asgoclated with these phenomena.

This means, morsover, that for motions of the class in
question it is reasonable o employ either completely developéd
equations, or equations of motion of an ideally compressible

fluid,

8. BOUNDARY CONDITIONS FOR THR SYSTEM

OF DIFFERENTIAL EQUATIONS OF GAS MUTION

Required for the integration of the obtained system of
differential equations of gas motion are the boundary conditions
on the surfaces of solid bodies surrounded by a steady flow of
gas and the boundary conditions at infinity, if the area occupiled

by gas extends to infinity.

(Since the order of the system we have obtained is higher
2
by ons t.ha}/ the order of the system which 1s obtained with an
incomplete accounting for the phenomena of transfer, the old

boundary conditlons do not fit the statement of the problem,

-l -
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('»

if only because their number does not correspond to the new

order of the system of equations of motdon.)

The problem of the boundary conditions at infinity is very
easlly solved. It is obvious that these conditions mist be implied
with the assignment of values to the density, temperature and

velocity components at infinity.

The solubion of the problem of boundary conditions at the

X
surfaces of gtreamlined solid bodies is more comple%.’

Mrst of all it is altogether clear that no mass of gas

permeates the surface of a strewnlined solid body.

Iff we designate as m the normal to the surface S of a
streamlined body and suppose that the streamlined body is motion-
less in space, then this physical fuct may be written in the

following formg

( D5 A% ) “(/f ) (8.1

In order to obtain the bourklary conditions at the surface
T of a streamlined solid body, let us assume that lmmediately at
the surface the gas either moves very slowly or is at rest.
(One may bring forward certain physical deliberations as
a basls for this assumption. We may assume a visually smooth
gstreamlined surface with a gas microscopically moving in its

- ; vieinlty; the gas will be subject to conditions which approach

U5 -
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the conditiong of flow through an extrenaly fine-pored madiume

The tremendous coafficients of resistance o the motion
of & gas through various kinds of fine gratings and porous media
are well known, as are the utterly insignificant expenditures of
gas in motlon through gratings and porous media, which with suffi-
cient fineness of the pores are found to be, for practical purposed,

%610, )

Disregerding the amall velocities of the ges in the directions
tangent to the gurface 9, and calling T and 1 5 vectors tangent

1o surfsce 5, we obtain two more marginal conditions:

== (’/ (8e2)

Tn a quiescent gas we must have a static pressurs distii~

butione Therefore, by a well known approximation, we may pub

.
&
TR

&4 /s /

::::;,\/ {;7/;—;)51 (843)
| N

where Fy ig the projection of the mass force onbto the normal to

the surface.

Marginal conditions (8.2) are falrly woll confirmed experi-
mentally. Marginal conditions (8.3) must still be experimentally
vorified and at present may be considered to constitute a 1likely

hypothesig.

- L6 -
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9 DIXAMPLE OF INTEGRATION
OF ﬁuﬁ’svssmq OF FQUATIONS OF GAS MOTION |

Lot us consider the very simple one~dimensional problem
of wteady transmission of heat through a layer of gas situated
between two parallel planes » with the condition that the difference
botween the temperatures of the two partitions is small, and mass
forces are absent.,

Grant that we have two parallel planes x = - _/ and

a

x =L AL« let the tesperatures of these planes be T, and T2

respectively. Let there be such a quantity of gas between the

two planes as would have dengity /0? if the density were con-
stant throughout the entire space occupied by gas. PFinally, let

the quantity

(9.1)

be so small that its square is negligible in comparison with
unity.
The considered problem fits the Tollowing somewhat modified

system of equations of gas motion:
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- -7J.@. L
}<9i A /

For simplicity, the gas 1s here considered to be moncatomic,

This does not lessen the generality of the analysis, For deter-

mination of the integration constants we have the following system

of conditions

(QII.L)

[P =
/7 W

At first glance it may seem that we have seven conditions

for the determination of six integration constants.

However, examination of the first equation in (9,

usrL.;t once th

2) shows
at the first of the conditions in {9.3) and (9.4)

are not independent but follow one from the other on the strength

of this differential aquation,

- 18 -

: 5-4
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. *
Since magndtude € " 18 assuned to be small, it is notural

to linearize equationa (942) and conditions (943) ~ (948)s e

put

s
() s ) D /7 S e , P ,
/ /O '(“ 3 7 {; f?‘)f‘]’.__./ e /T ZJST‘Z..T' (9.6)

e
< ‘; J;J & _ .

where the quantities with prime marks are small.

. ;
Then we obtain the following system of equations for the

determination of quantities ¢ 7y Y and T

5 la) L5

-»..,.._. o

T ot J»:""“

N M
f »-.x{.,.. 'f" o .:.'..,w. bewania )

yis / ] //1,.« L (947)

3 (9.8

Moreover, we will have the following system of conditions

for the determination of the integration constants:

-)_“9..

i
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- - 4 i ’
s =D K A7 at x = 40
s A S A 8
- e Ao’ 78
7 va ';: ; Z uw_équ ,7 ekl o f{,_/" = () at x = ;A'[;
. Z I A S '
Tl )_) (f’wr 'l
s i 71; - == (7 at x =~ (9.9)
L o AK s

Tntegrating the first and third of equatlons (9.7) and

taking into consideration the first of conditions (9.9), we getb

(9410)

(6.2)

7y (o) Mo @) ) (901) -
wf,; fomes 7: @, s Ay r:/ ’/Mt; a ” ‘ﬁm ’ ’ ]
2] g f
- 50 -
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AN ﬂ-«»]

/ -
Ap A7
> ardd q " § — We FE‘:'b
golving (9.410) for quantitles y and ay We B

, T , g, )
do’ _ [o ( é _lr, \{*g 2 o, A
2
\

e Z /M
/{ﬂ AJ AN . ¢
. /‘, 1 - Yj (5 1 (9412)
""" T o
¢ 7" 7 ) [N , @ 2
4 7,,, i Lo [,..., (/ S 4/) -«é”.- 7, Lty g /5} ) /4
Ar 4 3 V F Loy Y om, |

Tnbroducing (9.12) into the second of equations (947)5 vie

gob

o Ly
Yo / (9413)

In this equation

»_ A ~4] A,
e N, )(A8 ) FA

[
{ ”/CW / e / I
DTy (941h)
(/Zw /0 f&’ /}
Ay Ay A

==
{ ot )/ a4, -, ] — //é. ~4, ) 2

Equation (9.,13) is eauily integrated. After integration

we obtain

/ - 7%‘; g =%
T == 24/47‘:75; = ?‘*ﬁ: < {(9415)
-5 -
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where By and By are intogration constants.

With the ald of (9415) and (9.12) it is easy to find

and T'.  Javing performed the ‘caleulatlons, wo obtalin

. 2+

/ Z’.’ﬁ’ /¢, Mg, =4, )-—- /: 4. /5; )
- re— /6: - - yfi’ H e
4 (1= e )7y
(9416)

where Gl and C, are integration constants.

Having determined the integration constants A, Brs Bos

Gy, and Cnrs ; from the five remaining umtilized conditions we
2
y

cbtain for the determination of the integration constants

v
= (9417)
z 7,

With these formulas it is now simple to find the flow
tx of heat through any region perpendicular to the x axis. Applying

N formula (5.7) in linearized form and using formula (6.2)s we
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shall obtain

. Ay

i " o d ) R

Coy =M Gy b i ) e
e RIS (9.18)

From formulas (9.17) and (9.18) one may dvaw certain cone

clusions.

In the first place, if we succeed in finding the magnitude
of v! by experiment, then with the first formula in (9.17) we

N ) . . v :/
shall have a means of determining the difference ‘J -~ A,

In the second place, it follawsb.irectly from formula (9.18)
{
that the measurement of the flow t, of heat permitsi;the determination

} i
of 4 -
3. P

And, finally, in the third place, it follows from formula
(6.23) that all experimental works devoted to the search for the

magnitude of 4 A according to the formula

4 (9.19)

which has only heen employed in experimental works, have in fact

given the magnitude of !/‘3»-' /‘i .
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10, SECOND EXAMPLT OF TNTEGRATTION

OF A SYSTEM OF GAS MOTION EQUATIONS

1et us now consider the one-dimensional problem of the
steady transmission of heat through a layer of gas situated be-
tween two parallel planes, with the conditions that mass forces
are absent, but the difference between the temperatures of the

partitions is not small e

In accordance with the kinetic theory of gases we shall
consider that the viscosity A depends only on the tomperature
and is a known function of the temperature. In this case we
must again integrate the system of equations (942) using condi-

tions (943) = (9.5) in order to determine the arbitmary inbegra-

tion constants.

on the basis of the first of formulas (9.17), which also
gives the order of velocity v of the gas for the case being con-—
sidered, we may affirm that in an extremely broad class of cases
the velocity will be a small magnitude even for a large tempera-

ture drop.

Making use of this, let us disregard the terms in the
second and third of squations (9.2) which are of the order of
/,‘t/f.£ and 145 . Then the system of equations (9.2) is comverted

4 4

1o the system of equations

rs

J . o g |
RN S B Al .
Ae (/?U) " dy (//" A 7 /z/ ,:e’s[) (10.1) ,
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/0/? 7“"'":"

I | «
d o o AP AT
o = V)= [ i FA
wore | UK{ & AK i (10 (contt)

The firet of equations (10.1) is integrated directly and
after satisfaction of the first marginal condition in (9.3) and

also, consequentlyy of the first marginal condition in (9.4), gives

4,,{' o . /',a f? .
. / i
il mE / P e foe / J o
'{.,u L " (’/V L o ¢ (10.2)

!

ated

The second of equations {10.1) is also invegrated.and

gives

m,/f by (10.3)

where C1 is an integration o onstant.
The integral (10.3) provides for the fulfillment of the
third condition in both (9.3) and (9.4)

Moreover, if (10,3) is taken into account, the third
equation in (9.1) [“sic ~~ should read (10.1)_7 is also integrated

and gives the relationship

f/f L |
e, pol =4 /1:;;2 GO0, o

where Co is an integration constante

- 55 -
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1et us insert the veloclty v ryom (1042) inbo eguation ‘

(10.14), TLet us make use of the axpreaslons (642) for coaffi-
and Kl, insert them into (L0.L) and, finallys

clents Dl' 93 Ky
0.4) by the aid of (1043)e

oliminate the density f] from (X

romely sluple squation:

Then we cbtain the ext

(105)

Integrating this equation and gatisfying the second mar-

ginal conditions in (9.3) and (9els)s we obtain

7_.

o Ta A -

i‘ ‘\' 1 l { / /- % K

“g | Yz { 7 /’ /7 g e é/u (77:’/2“ ) w7147 gg:-.-: / (10.6) i
N | ,‘/

L7 [ T 5

The right hand gide of (10.6) is & known function of
temperatiure, and therefore prom (10.6) 1% ig possible 4o £ind the

distribution of temperature in relation to X.

Using (3043) and condition (9.5) and converting from

varisble x to integration with

integration with respect to a
we find the value

respect to a variable T by the aid of (10.5)s

of consbant Gy and obbain the formula for densiby:

-
1 . f
)= -ﬁiu/#//)/ff‘ f’" “/77‘“‘ (107)
="
t o 4
7; hll ]
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Further, iutroducing the axXpressions for 7 and ;0 in
(1042), using (L048) and the expression fop Coy We find an ex.-

pression for v, we get

(10.4)

" /-‘{. }1“/?74?.,

Formilas (10.6), (10.7) and (10.8) solve the problem that

was posed,

Finally, we may also obbain without difficulty an expression
for the flow of heat t.,., Ity like the veloeity, is found to ba

congtant and ig glven by the formula

(10.9)

Let us make 4 few remarks about the formulas we have obtained,

First of all let ug note that we too aps unable to find the
magnitudes of ’/; » /fi » [»f and ,ﬁ:' Separately and o@ only
find their differences from these f’ormulas. Let us note furthep
that formmilas (10.6) and (10.7) permit us to find eanily the

dependence of viscosity upon bemperature by means of measurements

of density or temperature,
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where £y 1s a nondimensional factor of the order of unity.

From formila (2.5) we see that with variation of density
in a macroscopically quiescent gas there occurs a £low of mass
through an area which is stationary relative to the gas. This
phenomenon of flow of mass as a result of denslty variation may

for expediency be called density self=liffusion.

It is evident that the reasoning also holds if we con-
sider a macroscopically moving gas and an area moving in space
with the macroscopic velocity w of the gas, The density self-
diffusion flow of mass, Q o will be given by formula (2.5)

j

in this case also.

Let us romark that density self-diffusion has never been
taken into account in the writing of equations of motion of a

viscous gas,

2s  Density Heat Transfer

lLet us consider, as above, a certain stationary region
of area /\S with normal m in a macroscopically quiescent gas,

e g

retain the former designations and analyze the problem of trangie

"
A

of internal ensrgy through area 2y B assuming the temperature
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